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Migration and the labor market

Between 2006 -2015, immigrants entering the EU-28 rose from 3.5
to 4.7 million.

But...how are immigrants absorbed by the labor market?

Large and persistent employment and wage gaps, especially
among non-OECD immigrants and females (De la Rica et al.,

2015).

Trade-off between unemployment risk and job quality (Reyneri

and Fullin, 2011).

They tend to occupy positions at the bottom of the
occupational ladder (Ballarino and Panichella, 2017).
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Occupational segregation

Research tackling the intersection between gender and
migration status is scarce in Europe.

Palencia-Esteban (2019) quantified the levels of segregation that
male and female immigrants experienced in 20 European
countries.

However, segregation does not tell whether a situation is
beneficial or detrimental. It depends on the quality of the
occupations where the group is overrepresented.
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What is this paper about?

We measure the economic and well-being consequences
associated with segregation in 12 European countries.

We measure social welfare losses.

Counterfactual analysis: do cross-country disparities persist
after controlling for immigrant’s characteristics?
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Local segregation indices (Alonso-Villar and Del Ŕıo, 2010)

The distribution of a target group across occupations is compared
with the distribution of the whole population.

Occup. Economy FI (20%)

1 60 (30%) 10 (25%)
2 20 (10%) 5 (12.5%)
3 50 (25%) 3 (7.5%)
4 30 (15%) 20 (50%)
5 40 (20%) 2 (5%)

Total 200 40

Table: With Segregation

FI (20%)

12=60*0.2
4=20*0.2

10=50*0.2
6=30*0.2
8=40*0.2

40

Table: No Segregation
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j : the size of the group g in the economy.
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∑

j tj : the total number of jobs in the economy.

The index expresses the % of the group that would have to change
occupations so as not to be segregated while keeping the
occupational structure of the economy unchanged.
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Well-being loss/gain of each group (Alonso-Villar and Del Ŕıo, 2017)

Including information on WAGES, we proxy for occupational
quality.
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Where ε>0 is the inequality aversion parameter

Occupational segregation translates into:

Well-being gains when the group is overrepresented in
high-wage occupations.

Well-being loss with overconcentration in low-wage jobs.
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Social welfare loss (Del Ŕıo and Alonso-Villar, 2018)

1. Social welfare loss curve associated with segregation.

Incidence: share
of workers that
experience welfare
losses.

Intensity: per
capita cumulative
welfare loss.

Inequality: in the
loss experienced
by disadvantaged
groups.

Dominance
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well-being losses 

divided by T
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2. Family of measures for social welfare loss.
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Social welfare loss (Del Ŕıo and Alonso-Villar, 2018)

1. Social welfare loss curve associated with segregation.

Incidence: share
of workers that
experience welfare
losses.

Intensity: per
capita cumulative
welfare loss.

Inequality: in the
loss experienced
by disadvantaged
groups.

Dominance

criteria.

Cumulative sum of 

well-being losses 

divided by T

Cumulative share of 

workers

𝑾𝒅𝑪
𝜺

Incidence

Inequality

Intensity

h=
𝑠∗

𝑇
0

2. Family of measures for social welfare loss.



Introduction Methods Data Results Conclusions Appendix

Outline

1 Introduction

2 Methods

3 Data

4 Results

5 Conclusions

6 Appendix



Introduction Methods Data Results Conclusions Appendix

Data

1. Second quarter of the 2019 European Labour Force Survey.

Sample: employed workers aged 16–64 years.

4 groups: male/female - natives/immigrants (country of birth).

2. 2014 Structure of Earnings Survey.

Estimate average hourly wages by occupation to input in LFS.

Economic activities A, T and U not considered.

3. 2015 EU-SILC (Earnings information from 2014).

Correct the estimated wages of the occupations linked to economic
activities A-T-U.

FINAL SAMPLE: 12 European countries.
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Occupational segregation by gender and immigration status
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Well-being loss/gain of male and female immigrants
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Portugal is the exception.
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Geographical pattern of immigrants’ welfare loss/gain Ψ0

Portugal and West-North VS. South-East and Germany
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Social welfare losses (SWL)
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Differences across countries

May result from the characteristics the countries or the immigrants
present.

Demand-side factors:

Institutional and labor market segmentation theories (Piore,

1983; Standing, 1989).

Theories of statistical discrimination (Phelps, 1972).

Supply-side factors:

Human capital theories (Becker, 1962; Chiswick and Miller, 2008).

Years of residence (Alonso-Villar and Del Ŕıo, 2013; Zwysen, 2018).

Networks (Stirling, 2015).
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Do geographical disparities in welfare losses and gains
disappear when immigrants have the same characteristics
across Europe?

We create counterfactual distributions, removing the cross-country
heterogeneity in immigrants’ characteristics (DiNardo, Fortin and

Lemieux, 1996; Grad́ın, 2013).

Basically, we REWEIGHT the observations such that the covariates
describing the characteristics of a group follow the distribution that
its corresponding group has in a reference country.

In our case:

Covariates: education, origin and years of residence.

Reference country: the UK (France and Italy for robustness).
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Take-home ideas

The monetary and well-being consequences arising from
segregation are negative for most foreign workers.

Losses are greater for females.

Big cross-country differences: Portugal and Italy extreme
cases.

Counterfactual analysis: immigrants’ characteristics explain
part of those disparities.
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Farewell

Thank you!
Comments, questions or miscelanea: apalencia@uvigo.es
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Counterfactual

Select covariates and reference county.

Combine covariates to classify group g into mutually exclusive
subgroups.

Make group g’s subgroups in country A have the same relative
size as in the reference country.

Ψz =

Pr(g=UK |z)
Pr(g=UK)

Pr(g=A|z)
Pr(g=A)

=
Pr(g = A)

Pr(g = UK )

Pr(g = UK |z)

Pr((g = A|z)
(3)

Pool group g’s from both counties and estimate the logit model:

Pr(g = UK |z) =
exp(z β̂)

1 + exp(z β̂)
(4)
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Decomposition

Apply different indices to this new counterfactual distribution:

෪𝜳𝜺𝒈

𝑨

𝜳𝜺𝑭𝑰
𝑨 − 𝜳𝜺𝑭𝑰

𝑼𝑲 = 𝜳𝜺𝑭𝑰
𝑨 − ෪𝜳𝜺𝑭𝑰

𝑨
+ ෪𝜳𝜺𝑭𝑰

𝑨
− 𝜳𝜺𝑭𝑰

𝑼𝑲

Compositional 
effect 

Intrinsic 
effect
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